If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100-4.9x^2=0
a = -4.9; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-4.9)·100
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{4*490}=\sqrt{4}*\sqrt{490}=2\sqrt{490}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{490}}{2*-4.9}=\frac{0-2\sqrt{490}}{-9.8} =-\frac{2\sqrt{490}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{490}}{2*-4.9}=\frac{0+2\sqrt{490}}{-9.8} =\frac{2\sqrt{490}}{-9.8} $
| s+62=13s-82 | | 8x-12/2=7x | | 0.08(x+3000)=4160 | | 10^x-1=100^2x-3 | | (3x+1)/2=1-x | | v=-7=4 | | 1=0.3*x-0.5*x-5 | | -3x^-2x-5=0 | | 20u+39=10u+49 | | 3x+1/2=1-x | | 1x+2=-5x+32 | | 6x+40+154=180 | | 7(n+2)+6=6n-7 | | 3(t+41)=-15(3-t) | | -44/7x=-28 | | -x^-3x+5=0 | | 5(5x-3)=1x | | 6(w+8+1=9 | | 4z-13=z+38 | | 9x^-24x+16=0 | | 6s-55=4s-15 | | 104=7x+30+9x+42 | | 3(n+4)=1/2(n+4) | | -2x^+3x=6 | | -0.56(x=8)=-2.8 | | -x^-5x+1=0 | | -5+6p=-35 | | 7x+3(x+3)=39 | | 10w-62=7w+1 | | 4y^2+44y+72=0 | | 51/10x−64/5=31/4 | | 100=13x |